14
sentence requires many words that are not seen in the vocabulary list, the model performance
will dramatically degrade especially. Second, the out-of-domain performance for the neural
machine translation needs to be improved. A possible solution for this particular problem is the
combination of large vocabulary from Jean et al.(2014) and assigning alignment score based on
domains, which is something I can further explore later.
References
Bahdanau, D., Cho, K., & Bengio, Y. (2016). Neural Machine Translation by Jointly Learning to
Align and Translate. ArXiv:1409.0473 [Cs, Stat]. http://arxiv.org/abs/1409.0473
Bentivogli, L., Bisazza, A., Cettolo, M., & Federico, M. (2016). Neural versus Phrase-Based
Machine Translation Quality: A Case Study. Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, 257–267. https://doi.org/10.18653/v1/D16-1025
Brown, P., Cocke, J., Pietra, S. D., Pietra, V. D., Jelinek, F., Mercer, R., & Roossin, P. (1988). A
statistical approach to language translation. Proceedings of the 12th Conference on
Computational Linguistics -, 1, 71–76. https://doi.org/10.3115/991635.991651
Brown, P. F., Cocke, J., Pietra, S. A. D., Pietra, V. J. D., Jelinek, F., Lafferty, J. D., Mercer, R.
L., & Roossin, P. S. (1990). A STATISTICAL APPROACH TO MACHINE TRANSLATION.
16(2), 7.
Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., &
Bengio, Y. (2014). Learning Phrase Representations using RNN Encoder-Decoder for Statistical
Machine Translation. ArXiv:1406.1078 [Cs, Stat]. http://arxiv.org/abs/1406.1078